Tips and Pitfalls in Nuclear Imaging for Cardiac Amyloidosis

Takashi Kudo, MD, PhD
Dept. of Radioisotope Medicine,
Atomic Bomb Disease Institute, Nagasaki University
I have following financial relationships to disclose.

Honoraria (Lecture fee) and Grant/Research funding:
: Nihon Medi-physics, Fuji Film Toyama Chemical
Honoraria (Lecture fee)
: Pfizer Japan inc.
Radiologist and nuclear medicine physicians knew that amyloidosis is one of the causes of extraosseous myocardial bone scan agent uptake.

- But we considered it is RARE!
- As you know, it is not “rare”, rather “common”.

From Datz F.L ed. “Gamuts in Nuclear Medicine, 3rd edition”
Game was changed with Perugini article (2005)

Perugini et al. JACC 2005; 46: p1076-1084

- Classify uptake into 4 grade system.
 - In the original article used Tc-99m DPD. However, this scoring is called “Perugini score” and used in many articles.

 Grade 0: No myocardial uptake. Normal rib uptake
 Grade 1: myocardia uptake < rib uptake.
 Grade 2: myocardial uptake = rib uptake
 Grade 3: myocardial uptake > rib uptake. rib is faint or not visible.

From ASNC cardiac amyloidosis practice point (ver2.0) 2019
... and

Bokhari article (2013)

Bokhari S. et al.

- PYP uptake ratio between heart and contralateral lung showed very strong discriminator for ATTR CA.
Pit-fall: Sensitivity and Specificity.
Q: Is this the case of....

- 1) Definitely ATTR amyloidosis. No need for further test.
- 2) Possible ATTR amyloidosis, however need another test.
- 3) Definitely not amyloidosis. No need for further test.

H/CL = 1.9 (1hr),
 1.7 (3hr)

Pergini Score
probably 2 (1hr)
1 or 2 (3hr)
A: Case presentation.

- A case of Myeloma.
- We suspect the AL, but PYP finding was as you see.
- Myocardium biopsy proved AL amyloid.

2) is right answer.

- Even H/CL is quite positive for ATTR, blood test to exclude AL amyloidosis is mandatory.

A clue:
On the SPECT image, U shape of LV wall is not visible.
Pit fall: not all the positive case are ATTR.

<table>
<thead>
<tr>
<th>EMB Findings</th>
<th>Perugini 0</th>
<th>Perugini 1</th>
<th>Perugini 2</th>
<th>Perugini 3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cardiac amyloid</td>
<td>31</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>Cardiac ATTR amyloid deposits</td>
<td>1</td>
<td>8</td>
<td>130</td>
<td>23</td>
<td>162</td>
</tr>
<tr>
<td>Cardiac AL amyloid deposits</td>
<td>21</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>Cardiac ApoAl amyloid deposits</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cardiac amyloid deposits of unknown type</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>27</td>
<td>137</td>
<td>26</td>
<td>244</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMB Findings</th>
<th>Grade 0</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cardiac amyloid</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Cardiac ATTR amyloid</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>67</td>
<td>85</td>
</tr>
<tr>
<td>Cardiac AL amyloid deposits</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Cardiac ApoAl amyloid deposits</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Cardiac amyloid deposits of unknown type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>12</td>
<td>11</td>
<td>68</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMB Findings</th>
<th>Grade 0</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cardiac amyloid</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Cardiac ATTR amyloid deposits</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Cardiac AL amyloid deposits</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Cardiac ApoAl amyloid deposits</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cardiac amyloid deposits of unknown type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>21</td>
</tr>
</tbody>
</table>

Gillmore J.D. et al. Circulation 2016; 133: 2404-2412

- Some AL amyloidosis shows positive findings.

Even PYP positive case, blood test to exclude AL CM have to be performed.
Pit fall: not all the ATTR CM is positive.

- Only 2 out of 19 cases of Phe64Leu mutation ATTR cardiac amyloidosis showed positive finding.

Musmeci MB et al. JACC imaging 2020 13: 1314-21
Not all the positive cases are CA.

- Bone scan for detect bone lesion in Myeloma patients.
- History of parathyroid operation.
- Clear myocardial uptake, but Myeloma >> AL?
- High density myocardium on CT
- Abnormal lung uptake.

Specimen from Lung proved metastatic calcification.

There is reason of myocardial bone scan uptake other than CA.

Datz F.L ed. “Gamuts in Nuclear Medicine, 3rd

BONE IMAGING

COMMON:
- Breast uptake — normal
- Cartilage calcification (e.g., costal, thyroid, cricoid)
- Cellulitis
- Chronic renal failure
- Electrical burn
- Infarct — myocardial, cerebral, splenic

UNCOMMON:
- Abscess
- Adriamycin cardiotoxicity
- Aneurysm
- Any cause of metastatic calcification
 - Breast — benign disease (e.g., fibrocystic disease)
 - Breast — malignant
 - Calcific tendinitis
Tip:
Use SPECT, and
SPECT/CT.
Q: Which one is ATTR-CA?

1) A is ATTR-CA
2) B is ATTR-CA
3) Both are ATTR-CA
4) Both are NOT.
Do not rely on numbers too much.

80yo female. A case of cancer with mild heart failure EF=48%. Diffuse/mild hypertrophy of LV

H/CL=317.60/228.75=1.39

ATTR amyloidosis was **proved** from operative (non cancer area) specimen

70yo female. A case of HT, Dyslipidemia and mild heart failure EF=52%. Diffuse/mild hypertrophy of LV

H/CL = 222.79/161.64.75=1.38

Amyloid was not found from myocardial biopsy

Ans: 1) A was ATTR-CA (B was not)
SPECT is essential for diagnosis. I prefer coronal SPECT.

- With coronal view, LV wall is easy to differentiate from blood pool.
SPECT/CT, Fusion is very helpful

- Sometimes, you cannot be confident only with SPECT.
- In such case, SPECT/CT fusion might be helpful.
Tips: When to image??
1hr or 3hr injection?

- In most cases, H/CL decline with time.
- However, blood pool activity also decline with time, thus contrast between heart to blood seems to be better on 3hr.
Pitfall: 3hr H/CL is less proven.

- Study from Columbia univ. Boston univ. & Mayo clinic
 - 3hr image tend to be low sensitivity than 1hr.
 - For H/CL, specificity is also less in 3hr.
 - For visual score, false positive cases are less in 3hr.

In this article, for 3 hr image, threshold was set to 1.3 rather than 1.5

Castano A. et al. JAMA Cardiol. 2016 Nov 1;1(8):880-889
Tips: when the myocardial uptake becomes max.

- For DPD, bone uptake increased with time, but myocardial uptake is highest on 1hr and then declined.

Hutt DF et al. Eur Heart J Cardiovasc Imaging 15; 1289-1298

- H/CL is always higher in 1hr than 3hr.

For H/CL measurement, 1hr should be better.

However, for the visual assessment, contrast is also very important, and it becomes better at 3hr.
ATTR amyloidosis diagnosis criteria.

Table 2. Semi-quantitative Visual Grading of Myocardial 99mTc-PYP Uptake by Comparison to Bone(rib) Uptake

<table>
<thead>
<tr>
<th>Grade</th>
<th>Myocardial 99mTc-PYP Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>no uptake and normal bone uptake</td>
</tr>
<tr>
<td>Grade 1</td>
<td>uptake less than rib uptake</td>
</tr>
<tr>
<td>Grade 2</td>
<td>uptake equal to rib uptake</td>
</tr>
<tr>
<td>Grade 3</td>
<td>uptake greater than rib uptake with mild/absent rib uptake</td>
</tr>
</tbody>
</table>

- Visually: Grade 2-3 (equal or higher than ribs) is positive
 - Using 3 hr after injection image should be recommended.
- Quantitatively: H/CL ratio over 1.5 is positive.
 - Using 1 hr after injection has many evidences.

ASNC cardiac amyloidosis practice point (ver2.0) 2019
Pit fall:
Are all the bone seekers the same?
Are all the Bone tracers same?

• Not all the bone seekers are same.
• There is different character according to the tracers.
• MDP may be not useful for CA.

DPD

HMDP

with solid-state camera.
CA positive case showed high muscle activity.

Bellevre D al.
J Nucl Cardiol 2020 epub

PYP

SPECT

No correlation between myocardial and muscle uptake.

Bellevre D al.
J Nucl Cardiol 2020 epub

MDP do not show good accumulation to ATTR CA.

Cases from Yang JC, J Nucl Cardiol 25; p1879-1984
11 cases who showed high uptake on DPD did not show uptake on MDP
Perugini et al. JACC 2005; 46: p1076-1084

Hutt DF et al.
Eur Heart J Cardiovasc Imaging 15; 1289-1298

DPD sometimes show high soft tissue uptake with diminished bone uptake
What is the Next step?
They found H/CL=1.6 as the threshold to separate patient prognosis. But….

Castano A. et al. *JAMA Cardiol.* 2016;1:880-889

range of H/CL 1.5~1.6

only few cases distributed in this range. This threshold(=1.6) may not so useful in daily practice.

Nagasaki University data.
Quantification using SPECT.

Quantitative 99mTc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: Feasibility and correlation with visual scores

Caobelli F. et al J Nucl Cardiol 2020; 27: 1456-1463

Analysis with SPECT/CT
Pergini score and SUV correlates well.

Quantitation of myocardial 99mTc-HMDP uptake with new SPECT/CT cadmium zinc telluride (CZT) camera in patients with transthyretin-related cardiac amyloidosis: Ready for clinical use?

Bellevre D. et al J Nucl Cardiol 2020 epub

Analysis using CZT camera.
ATTR patient showed high SUV in heart, but bone SUV is similar to normal subject.

• Quantitative analysis is a frontier.
Take home message.

• Tc-99m PYP is very useful tool for diagnose ATTR-CA.
 – However, there could be false negative, false positive case.
 – Even positive finding, blood test to exclude AL is necessary.

• H/CL ratio is useful tool, but do not rely on it too much.
 – Sometimes, visual interpretation is more important than measuring H/CL

• Planar is not enough.
 – In some cases, SPECT is required to differentiate blood pool activity and wall uptake.
 – SPECT/CT is very helpful