Overview of Cardiac Amyloidosis and the Utility of 99mTc-labelled Tracers Scintigraphy for Diagnosis of Transthyretin Cardiac Amyloidosis

Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
Toru Kubo
I have received consulting fees or honoraria and remuneration for lecture from Pfizer Japan Inc.

Name of Authors: Toru Kubo
Management of cardiac amyloidosis

✓ Invasive diagnostic procedure
 (endomyocardial biopsy)
 ➔ Utility of 99mTc-labelled tracer scintigraphy

✓ Recognition as a rare disease
 ➔ Major important cause of HF in the elderly

✓ Treatment with supportive care
 ➔ Emergence of disease-modifying therapies
Utility of 99mTc-labelled Scintigraphy

Prevalence of ATTR-CA in HFpEF Patients

HF + LVEF ≥ 50% + MWT ≥ 12mm
164 patients

44 patients refuse to participate

99mTc-DPD SCINTIGRAPHY
120 patients

(-) 104 patients (86.6%)

(+) 16 patients (13.3%)

TTR Genetic testing

No mutations

4 patients EMB

Prevalence of ATTR-CA in Severe AS

6% of ATTR-CA in AVR for severe AS

16% of ATTR-CA in TAVI for severe AS

Prognosis of ATTRwt-CA Patients

Heart Failure Resulting From Age-Related Cardiac Amyloid Disease Associated With Wild-Type Transthyretin
A Prospective, Observational Cohort Study

Lawrence H. Connors, PhD; Flora San, MD; Martin Sh通讯, MD; Francesco Sullano, MD; Fangcai Sun, PhD; Frederick L. Reberg, MD; John L. Berk, MD; David C. Soldin, MD, PhD

5-year survival rate: 35.7%

Prognosis of Japanese ATTRwt-CA Patients

ATTRwt-CA patients in Kochi Medical School Hospital

1-year survival rate: 79%
2-year survival rate: 68%
5-year survival rate: 34%

The ATTR-ACT Clinical Trial

Analysis of All-Cause Mortality

Probability of Survival

Hazard ratio, 0.70 (95% CI, 0.51–0.96)

Months since First Dose

Pooled tafamidis
Placebo

JCS 2020 Guideline on Diagnosis and Treatment of Cardiac Amyloidosis

Hiroaki Kitaoka; Chisato Izumi; Yasuhiro Izumiya; Takayuki Inomata; Mitsuharu Ueda; Toru Kubo; Jun Koyama; Motoaki Sano; Yoshiki Sekijima; Nobuhiro Tahara; Nobuhiro Tsukada; Kenichi Tsujita; Hiroyuki Tsutsui; Takeshi Tomita; Masashi Amano; Jin Endo; Atsushi Okada; Seitaro Oda; Seiji Takashio; Yuichi Baba; Yohei Misumi; Masahide Yazaki; Toshihisa Anzai; Yukio Ando; Mitsuaki Isobe; Takeshi Kimura; Keiichi Fukuda on behalf of the Japanese Circulation Society Joint Working Group
3 Subtypes of Cardiac Amyloidosis

<table>
<thead>
<tr>
<th>Precursor protein</th>
<th>Underlying disorder</th>
<th>Organ involvement</th>
<th>Other</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Monoclonal immunoglobulin light chain</td>
<td>Plasma cell dyscrasia</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>ATTRwt</td>
<td>Wild-type TTR</td>
<td>Aging</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>ATTRv</td>
<td>Mutant TTR</td>
<td>Mutations in TTR gene</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>AA</td>
<td>SAA</td>
<td>Inflammatory disorders (RA, JIA)</td>
<td>−/+</td>
<td>+++</td>
</tr>
</tbody>
</table>

JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
Algorithm for Diagnosis of Cardiac Amyloidosis

JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
Question 1
Which ECG findings strongly suspect cardiac amyloidosis in patients with cardiac hypertrophy?

1. High voltage with ST-T changes
2. Low voltage in limb leads
3. Short PQ interval
Clinical Findings of Cardiac Amyloidosis

<table>
<thead>
<tr>
<th>(ECG findings)</th>
<th>(Echo findings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage in limb leads</td>
<td>Ventricular wall thickening (including RVH)</td>
</tr>
<tr>
<td>QS pattern in V1-3</td>
<td>Atrial septal thickening</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>Pericardial effusion</td>
</tr>
<tr>
<td>Conduction disorder</td>
<td>Restrictive pattern</td>
</tr>
<tr>
<td>Ventricular arrhythmia</td>
<td>Apical sparing</td>
</tr>
</tbody>
</table>

JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
Apical Sparing Pattern

Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis

Dermot Phelan, Patrick Collier, Paaladinesh Thavendiranathan, Zoran B Popović, Mazen Hanna, Juan Carlos Plana, Thomas H Marwick, James D Thomas
A Typical Case of ATTR-CA

A case in the Kochi Medical School Hospital

ATTRwt-CA
Not Always Typical Findings in CA Patients

Especially in the early stages of CA or ATTR type

<table>
<thead>
<tr>
<th>(ECG findings)</th>
<th>(Echo findings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage in limb leads</td>
<td>Ventricular wall thickening (including RVH)</td>
</tr>
<tr>
<td>QS pattern in V1-3</td>
<td>Atrial septal thickening</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>Pericardial effusion</td>
</tr>
<tr>
<td>Conduction disorder</td>
<td>Restrictive pattern</td>
</tr>
<tr>
<td>Ventricular arrhythmia</td>
<td>Apical sparing</td>
</tr>
</tbody>
</table>

JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
Rate of ECG Findings of Cardiac Amyloidosis

Table 13. Rate of Electrocardiogram Findings Among Different Types of Cardiac Amyloidosis

<table>
<thead>
<tr>
<th>Types</th>
<th>Low voltage</th>
<th>Pseudoinfarct pattern</th>
<th>Atrioventricular block</th>
<th>Atrial fibrillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>23–64%</td>
<td>15–69%</td>
<td>15–26%</td>
<td>6–32%</td>
</tr>
<tr>
<td>ATTRwt</td>
<td>13–40%</td>
<td>18–71%</td>
<td>11–33%</td>
<td>27–67%</td>
</tr>
<tr>
<td>ATTRv</td>
<td>23–38%</td>
<td>18–69%</td>
<td>25–45%</td>
<td>5–17%</td>
</tr>
</tbody>
</table>

JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
Question 2

Which are the extracardiac findings that suspect cardiac amyloidosis?

1. Achilles tendon xanthoma
2. Angiokeratomas
3. Carpal tunnel syndrome
JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
A Case of ATTRwt-CA with CTS

A case in the Kochi Medical School Hospital

80 y.o.
Woman
Dyspnea
Bil. carpal
tunnel syndrome
If the patient is suspected of having CA,

- **M protein detection**
 - Serum FLC
 - Serum protein electrophoresis
 - Serum immunofixation
 - Urine immunofixation

- **99mTc PYP scintigraphy**
 - Grade 0
 - Grade 1
 - Grade 2-3

JCS 2020 guideline on diagnosis and treatment of cardiac amyloidosis
99mTc Scintigraphy with High Sensitivity and Specificity

H/CL ratio (heart / contralateral)

H/CL > 1.5 (1-h imaging)

ATTR-CA

Sensitivity 87%
Specificity 100%

99mTc Scintigraphy with High Sensitivity and Specificity

ATTX-CA
Sensitivity 99%
Specificity 86%

Nonbiopsy diagnostic approach

✓ 99mTc Scintigraphy positive
✓ FLC negative

ATTR-CA

Gillmore JD, et al. Circulation 2016;133:2404-12
Question 3

Which patients have ATTR cardiac amyloidosis?
Which patients have ATTR cardiac amyloidosis?

1. Late 60s, Woman, Family Hx of ATTRv
2. Late 70s, Woman, TTR (+) in CTS tissue
3. Late 70s, Man, Shortness of breath
99mTc-PYP Scintigraphy

1. Late 60s, Woman, Family Hx of ATTRv
2. Late 70s, Woman, TTR (+) in CTS tissue
3. Late 70s, Man, Shortness of breath

Grade 0
Grade 0
Grade 3

No findings of cardiac amyloidosis → follow-up
TTR (+) in endocardial biopsy
TTR mutation (-) → Diagnosis of ATTRwt-CA

Diagnosis of ATTRwt-CA
Take Home Message

✓ Importance of awareness of cardiac amyloidosis in HF and arrhythmic patients

✓ Utility of 99mTc-PYP Scintigraphy as a noninvasive diagnostic modality for ATTR-CA with high sensitivity and specificity